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Abstract

An artifact-free ECG is essential during cardiopul-
monary resuscitation (CPR) to decide adequate therapy.
Chest compressions (CCs) cause artifacts that alter the
ECG waveform. This study analyzes the effectiveness
of CPR artifact suppression filters to restore the ECG.
For that purpose, artificial mixtures of artifact-free ECGs
and CPR artifacts mixed at different signal-to-noise ratios
(SNRin) were used. Several configurations of three state-
of-the-art filters were compared: Least Mean Squares
(LMS), Recursive Least Squares (RLS) and Kalman. Per-
formance was evaluated by comparing the artifact-free
ECGs and the filtered ECGs in terms of the restored SNR
(SNRres) and the Pearson’s Correlation coefficient (PCC).
RLS was the best option with a mean SNRres of 3.3 dB at
the optimal working point, slightly above the LMS algo-
rithm in terms of SNRres. The similarity of the restored and
the clean ECG increased with SNRin, obtaining PCC val-
ues above 0.6 for SNRin > -5 dB. In conclusion, suitable
filtering methods to restore ECG waveforms during CPR
were proposed, that would enhance the reliability of the
ECG analysis during CCs.

1. Introduction

High quality cardiopulmonary resuscitation (CPR) and
early defibrillation are key for the survival of out-of-
hospital cardiac arrest (OHCA) patients [1]. In particular,
uninterrupted chest compressions (CCs) provided during
CPR are of critical importance [2]. Whereas basic life sup-
port responders rely on the shock advice algorithm (SAA)
of a commercial defibrillator for a shock/no-shock deci-
sion, advanced life support (ALS) clinicians visually eval-

uate the ECG to decide suitable therapeutic interventions.
Unfortunately, in both scenarios, CCs must be interrupted
to avoid the confounding effects of CPR artifacts on the
ECG. These interruptions, which compromise coronary
perfusion pressure, worsen CC fraction and may result in
decreased survival [2].

Several adaptive filters have been designed to remove
CPR artifacts, ranging from filters that use addtional ref-
erence signals correlated with the artifact to simpler but
less effective filters that analyze the ECG alone [3]. Tak-
ing advantage of the quasi-periodic nature of CPR artifacts,
adaptive filters based on the multiharmonic-model of the
artifact have also been explored [4]. The latter are the ones
that offer, to date, the best compromise between simplic-
ity and performance. The underlying ECG waveform is
unknown during CCs which complicates the measuring of
filter perfomance as the real and the filtered ECG wave-
forms can not be directly compared. Therefore, most of the
state-of-the-art adaptive filters have been indirectly evalu-
ated in terms of the sensitivity and specificity of a commer-
cial SAA applied to the filtered ECG [3].

This study addresses the above-mentioned knowledge
gap by using artificial mixtures of artifact-free ECGs
recorded during OHCA and CPR artifacts obtained in the
absence of electrical activity of the heart (asystole) to eval-
uate the performance of several state-of-the-art filters. The
mixture model allows to know the underlying rhythm of
the patient and the performance of the filter can therefore
be evaluated in terms of ECG waveform restoration. In this
way, suitable filter configurations to restore ECG wave-
forms during CPR could be determined, allowing reliable
clinical decisions without interrupting CPR therapy.
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2. Materials

CPR artifacts were obtained from a large prospective
clinical trial designed to measure CPR quality during
OHCA. Details on the study can be found at [5]. The raw
data for this trial consisted of the ECG and the compression
depth (CD) signals derived from accelerometer data. From
this study, a subset of 1192 10-s segments corresponding
to 177 patients was extracted with concurrent ECG and CD
signals. These segments were acquired in the presence of
asystole and during CCs. Asystole is the complete absence
of electrical activity in the heart. Therefore, in these inter-
vals the only activity in the ECG is the one induced by the
CCs. These segments are therefore a suitable alternative to
simulate CPR artifacts in the artifical mixtures.

Artifact-free ECGs, which simulate the real underlying
rhythm of the patient in the artificial mixture, were ex-
tracted from three OHCA public databases: CUDB, VFDB
and AHADB [6]. From these public databases, a sub-
set of 5724 10-s ECG segments was extracted from 67
OHCA patients during the absence of CCs. These seg-
ments include both shockable (ventricular tachycardia and
ventricular fibrillation) and non-shockable rhythms (orga-
nized rhythms).

3. Methods

3.1. Mixture model

The artificial corrupted ECG signal, x(n), is the mix-
ture of an artifact-free ECG, secg(n), and a CPR artifact

segment, scpr(n), recorded during asystole:

x(n) = secg(n) + αscpr(n) (1)

The signal-to-noise-ratio (SNR) of x(n) is controlled by
the positive-valued weight α:

SNRin = 10 · log10
(

Pecg

α2Pcpr

)
(2)

where Pecg and Pcpr denote the power of secg(n) and
scpr(n), respectively.

The subscript ‘in’ indicates that the SNR applies to the
filter input signal x(n). In terms of signal power and
SNRin, α is given by:

α =

√
Pecg

Pcpr
· 10−

SNRin
10 (3)

First, for each patient, 4 artifact-free ECGs were ran-
domly selected, half of which were shockable and the other
half were non-shockable rhythms, obtaining 67 · 4 = 268
signals, secg(n). Then, each of these resulting signals was
mixed with 15 randomly selected CPR artifacts, scpr(n),
for 7 different SNRin values, ranging from -15 dB to 15
dB in steps of 5 dB. So, the final artificial database con-
sisted of 268 · 15 · 7 = 28140 corrupted ECG segments,
x(n).

3.2. Adaptive filtering

During CCs, the CPR artifact was modeled as a quasi-
periodic interference composed of N harmonics and vary-
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Figure 1. Mixture model. From top to bottom: a CPR artifact segment recorded during CCs, an artifact-free ECG acquired
during the absence of CCs and an artificially corrupted ECG segment derived from the mixture of the previous signals for
a SNRin of -5 dB.
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ing fundamental frequency, f0(n):

scpr(n) =

N∑
k=1

ak(n) cos (kω0(n)n) + bk(n) sin (kω0(n)n)

f0(n) =
1

tk − tk−1
tk−1 < nTs ≤ tk

where ω0(n) is the discrete angular frequency, Ts is the
sampling period and tk are the time instants of the CCs
that were automatically marked on the compression depth
signal using a negative peak detector with a -1.5 cm thresh-
old.

The Fourier coefficients, ak(n) and bk(n), define the
adaptive filter that adjusts to the time-varying character-
istics of the artifact. The restored ECG, ŝecg(n), was ob-
tained by subtracting the model estimate, ŝcpr(n), from the
artificially corrupted ECG signal, x(n).

In this study, Recursive Least Squares (RLS) [7], Least
Mean Squares (LMS) [4] and Kalman filters [8] were ex-
plored for estimating ak(n) and bk(n). All filter types
employ criteria to minimize the error between x(n) and
ŝcpr(n) at the harmonics of f0(n). Different number of
harmonics (N ) and many adaptability coefficients were
tested for each filter within the following working ranges:
1 ≤ N ≤ 5, 0.0001 ≤ µ ≤ 0.01 for the LMS, 0.985 ≤
λ ≤ 0.9999 for the RLS and 1 · 10−7 ≤ µ ≤ 1 · 10−4 for
the Kalman filter.

3.3. Performance metrics

Two measures were computed to evaluate filter perfor-
mance in terms of ECG waveform restoration: the SNR of
the restored signal (SNRres) and the Pearson’s Correlation
Coefficient (PCC) to measure the similarity between the
restored, ŝecg(n), and the artifact-free ECG, secg(n):

SNRres = 10 · log10
(
Pecg

Pe

)
(4)

PCC =

∑L
n=1 secg(n) · ŝecg(n)√∑L

n=1 s
2
ecg(n)

√∑L
n=1 ŝ

2
ecg(n)

(5)

where Pecg and Pe are the power of secg(n) and e(n) =
secg(n)− ŝecg(n), respectively.

Performance metrics were computed over the 2-10 s in-
terval of the restored ECG, ŝecg(n), the first 2 s were left
out to avoid adaptive filtering transients.

4. Results

Table I shows the best configuration for each filter in
terms of the mean SNRres obtained for all tested SNRin

values, as well as the mean SNRres and PCC values reached
with that configuration.The RLS filter was the best option
with a mean SNRres and PCC of 3.3dB and 0.74, slightly
above the LMS algorithm in terms of SNRres.

Best Configuration SNRres PCC
RLS N = 2, λ = 0.9994 3.3 0.74
LMS N = 4, µ = 0.0013 3.2 0.74
Kalman N = 2, q = 6.1 · 10−6 3.1 0.73

Table 1. The optimal working point for each adaptive filter
in terms of the mean SNRres obtained for all tested SNRin
values. The mean PCC and SNRres values reached using
those configurations are also shown.

The left plot of Figure 1 shows the mean SNRres ob-
tained using the best performing filter, RLS, in terms of
the configuration parameters, λ and N . The optimal work-
ing range for the RLS filter in terms of λ was around values
close to 1, i.e narrower bandwidth filters were overall more
effective at artifact removal. Regarding the number of har-
monics, intermediate values were preferred, N ∈ {2, 3, 4}.

The right plot of Figure 1 shows the mean improvement
obtained in SNR (SNRres −SNRin) and the mean PCC val-
ues reached after applying the optimal configuration of the
filters as a function of SNRin. At high corruption levels (up
to -5 dB) the SNR increase was above 5dB. As SNRin in-
creases, the improvement in SNR becomes smaller. Even
so, for SNRin = 10dB, where the power of the clean
ECG is 10 times higher than the CPR artifact, the noise
was reduced by approximately 1.5dB at the output of the
filters. The similarity of the restored and the clean ECG
increased with SNRin, obtaining PCC values above 0.6 for
SNRin > −5 dB.

As in real CPR scenarios the SNRin is unknown, the op-
timal configuration of the RLS filter was also analyzed
for strong and low CPR artifact corruption levels. For
SNRin > 0 dB, the optimal working point of the RLS was
N = 5 and λ = 0.9999, whereas for SNRin < 0 the best
performance was obtained for N = 1 and λ = 0.9860.
Therefore, less harmonics and coarser filtering is required
as the artifact power increases at the input of the filter.

5. Discussion

The present study provides an evaluation of ECG wave-
form restoration following adaptive CPR artifact cancel-
lation filtering. With this approach, signal quality indices
can be determined providing insight into how accurately
the underlying ECG rhythms can be restored with filtering
during the administration of CCs.

Three of the best state-of-the-art adaptive filters were
compared using the restored SNR and the PCC as signal
quality indices: RLS, LMS and Kalman. The best per-
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Figure 2. The left plot shows the performance of the RLS filter in terms of mean SNRres as a function of the configuration
parameters, λ and N . The right plot shows the mean improvement obtained in SNR (SNRres − SNRin) and the mean PCC
values reached using the optimal working point of the filters in terms of SNRin.

forming configuration setting was determined for each fil-
ter and, although the 3 filters performed similarly, the RLS
filter resulted to be the best alternative for the removal of
CPR artifacts. In addition, optimal filtering configurations
were proposed depending on the power of the CPR artifact
at the input of the filter.

In conclusion, suitable filter configurations to restore
ECG waveforms during CPR were determined, allowing
reliable clinical decisions without interrupting CPR ther-
apy.
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